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Abstract. Dual material space–time with defect field is presented in the language of differential
forms: one is the strain space–time whose basic equation is the continuity equation for the
dislocation 2-form; the other is the stress space–time whose basic equation is the continuity
equation for the couple-stress and angular momentum 2-form. Continuity and kinematic equations
in each space can be derived by the transformation fromp-form to (p + 1)-form. Moreover,
several constitutive equations can be recognized as the transformation between thep-form of the
strain space–time and the(4 − p)-form of the stress space–time. These kinematic, continuity
and constitutive equations can be interpreted geometrically as Cartan structure equations, Bianchi
identities and Hodge duality transformations, respectively.

1. Introduction

Theoretical descriptions of defect field based on differential geometry (e.g. [1]) or gauge theory
(e.g. [2]) are referred to as continuum theory of defects. In the last few years, continuum theory
of defects has created considerable interest in application to space and planetary sciences such
as cosmic strings (e.g. [3]), Einstein–Cartan gravity (e.g. [4]), seismicity (e.g. [5]) and geodesy
(e.g. [6]). One important application of continuum theory of defects is to represent the material
by two different types of space (e.g. [1, 7]). One is called the strain space whose geometric
objects such as metric, torsion and curvature tensors are responsible for strain, dislocation
density and disclination density, respectively. The other is called the stress space whose
metric, torsion and curvature tensors are responsible for the stress function, couple stress and
stress, respectively [7–12]. This symmetric structure implies that the material with defect field
has the dual structure of Riemann–Cartan material space. Schaefer [8] was the first to point
out this dual point of view and show that continuity equations in strain and stress space can be
interpreted geometrically as Bianchi identities. In this case, the kinematic equations in strain
space can be interpreted geometrically as the Cartan equation of structure [2].

The strain space and the stress space are not irrelevant to each other. For instance, stress is
related to strain through the well known constitutive equation called Hooke’s law in the theory
of elasticity. The stress function and couple-stress function represent the potential resisting
growth of disclination and dislocation densities, respectively (e.g. [7]). These imply that we can
link stress and strain space together through several constitutive equations. The problem of how
to link them has been highlighted by energy balance aspects such as the variational principle.
For instance, Oden and Rebby [13] present dual-complementary variational principles to
generalize the Tonti diagram [14], where one intermediate variable (e.g. strain) is paired with
the other intermediate variable (e.g. stress) through a constitutive equation (e.g. Hooke’s law).
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Table 1. Quantities in strain space–time:F3+1.

Time-like components Space-like components

velocity and distortion 1-form: velocity 0-form: distortion 1-form:
Bi = vi dT + βi vi βi = βiA dxA

bend-twist and spin 2-form: spin 1-form: bend-twist 2-form:
Ki = −ωi ∧ dT + κi ωi = ωiA dxA κi = κiA dSA
dislocation (density and current) 2-form: dislocation current 1-form: dislocation density 2-form:
Di = I i ∧ dT + αi I i = I iA dxA αi = αiA dSA
disclination (density and current) 3-form: disclination current 2-form: disclination density 3-form:
�i = −J i ∧ dT +2i J i = J iA dSA 2i = θi dV

This dual diagram is useful to derive constitutive equations in a systematic way, but lacks the
geometric interpretation of the constitutive equations. Meanwhile, constitutive equations in the
electromagnetic field, whose geometric structure is similar to that of defect field (e.g. [15]), has
already been interpreted geometrically based on the Hodge duality transformations (e.g. [16]).

Thus, we use this duality transformation to achieve clear geometric meanings of the
constitutive equations of defect field. Moreover, we express strain and stress space–time
in the language of differential form to show the dual structure of Riemann–Cartan material
space–time.

2. Strain space–time

In this section, we review the strain space–time based on the work of Edelen and Lagoudas [2].
Let {x1, x2, x3, x4} be the Cartesian coordinates. In this paper, we setx4 = cT = √E/ρT ,
wherec is the velocity [17],T is the time variable,E is the elastic modulus andρ is the density of
mass. The volume element of three-dimensional space is given by dV = dx1∧dx2∧dx3, where
the symbol∧ denotes the wedge product. The oriented surface element of two-dimensional
space is given by the inner product: dSA = 〈∂A, dV 〉. The (3 + 1)-dimensional exterior
derivative operator is given by d= ds + dT ∧ ∂t , where subscripts refers to pure space-
differentiation and subscriptt to time-differentiation.

Here, letF3+1 be the strain space–time. Variables inF3+1 expressed by the differential
forms are summarized in table 1. For instance, the dislocation (density and current) 2-form
Di is given by

Di = I i ∧ dT + αi (1)

whereI i is the dislocation current 1-form andαi is the dislocation density 2-form. Dislocation
density is purely spatial, whereas dislocation current has time dependence. In this paper, we
refer to the first term of (1) as time-like components of dislocation 2-form and the second term
as space-like components, and we refer to the other quantities in a similar fashion. The basic
equation inF3+1 is the continuity equation for the dislocation 2-form:

dDi = �i (2)

where�i is the disclination (density and current) 3-form. This equation can be divided into
space-like and time-like components:

dsα
i = 2i and ∂tα

i + dsI
i = −J i (3)

where2i is the disclination density 3-form andJ i is the disclination current 2-form. Since
d · dDi = 0, (2) gives the continuity equation for the disclination density 3-form:

d�i = 0 (4)
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or

ds2
i = 0 and ∂t2

i + dsJ
i = 0. (5)

The general solution of a linear system of inhomogeneous equation (2) is given by the general
solution dBi of the associated homogeneous system plus a particular solutionKi [2]:

Di = dBi +Ki (6)

whereBi is the velocity and distortion 1-form andKi is the bend-twist and spin 2-form. This
kinematic equation can be also divided into

αi = dsβ
i + κi and I i = dsv

i − ∂tβi − ωi (7)

whereβi is the distortion 1-form,vi is the velocity 0-form,κi is the bend-twist 2-form andωi

is the spin 1-form. Finally, from (3) and (6), we have another kinematic equation:

�i = dKi (8)

or

2i = dsκ
i and J i = dsω

i − ∂tκi . (9)

In the particular case of�i = 0, (8) and (6) give

Ki = dφi (10)

Di = dB̃i and B̃i := Bi + φi (11)

whereφi is the rotational displacement 1-form. Moreover, ifDi = 0, (11) gives

B̃i = dui (12)

whereui is the displacement 0-form. These results are summarized graphically, in the left-hand
side of figure 1. The arrows represent exterior differentiation.

3. Stress space–time

Although the previous strain space is simplified and systematized by a reformulation in a
four-dimensional space–time setting [2], the stress space is not four-dimensional. Thus, in
this section, we extend the stress space to a(3 + 1)-dimensional setting by introducing stress
potential and couple-stress potential [18].

Here, letG3+1 be the stress space–time. Variables inG3+1 expressed by the differential
forms are summarized in table 2. Due to the property of dual transformation (see section 4 for
details), time-like components inG3+1 are transformed to be space-like inF3+1. Conversely,
space-like components inG3+1 transform to be time-like inF3+1. Thus, we refer to the time-
like components inG3+1 as dual space-like components and the space-like components as dual
time-like. For instance, stress is dual space-like and momentum is dual time-like. This is more
suited to our reality than to regard stress as time-like and momentum as space-like.

The continuity equation for the couple stress and angular momentum 2-formMi is given
by

dMi = 6i (13)

where6i is the stress and momentum 3-form. As we have seen in section 2, the system of
continuity equations and kinematic equations inF3+1 are direct consequences of the single
statement (2) [2]. In the same way, (13) gives continuity and kinematic equations inG3+1 as
follows:

d6i = 0 (14)

Mi = dXi +Ci (15)

6i = dCi (16)
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Figure 1. Dual structure of defect field in four-dimensional material space–time.

Table 2. Quantities in stress space–time:G3+1.

Time-like components Space-like components
(dual space-like components) (dual time-like components)

stress function 1-form: stress function 0-form: stress potential 1-form:
Xi = χi dT i + ζ i χi ζ i = ζ iA dxA

couple-stress function 2-form: couple-stress function 1-form: couple-stress potential 2-form:
Ci = −ci ∧ dT + ξ i ci = ciA dxA ξ i = ξ iA dSA
couple-stress and angular momentum 2-form: couple-stress 1-form: angular momentum 2-form:
Mi = mi ∧ dT + ai mi = miA dxA ai = aiA dSA
stress and momentum 3-form: stress 2-form: momentum 3-form:
6i = −σ i ∧ dT + P i σ i = σ iA dSA P i = pi dV

whereXi is the stress and momentum function 1-form andCi is the couple-stress function
2-form. Dual time-like and dual space-like components of (13)–(16) are given as follows,
respectively:

dsa
i = P i and ∂ta

i + dsm
i = −σ i (17)

dsP
i = 0 and ∂tP

i + dsσ
i = 0 (18)

ai = dsζ
i + ξ i and mi = dsχ

i − ∂tζ i − ci (19)

P i = dsξ
i and σ i = dsc

i − ∂t ξ i (20)

where notations are summarized in table 2. These results are summarized graphically in the
right-hand side of figure 1.
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4. Duality and constitutive equations

The vector space ofp-vectors andp-forms at any point in ann-dimensional manifold have the
dimension:Cnp = n!/(n−p)!p!. BecauseCnp = Cnn−p, it is found that at a point there are four
spaces which have equal dimension: the vector spaces ofp-forms,(n− p)-forms,p-vectors
and(n−p)-vectors [19]. There are two important transformations among these spaces: one is
the transformation between the space ofp-forms andp-vectors given by the metric tensor; the
other is the linear transformation between the space ofp-forms and(n− p)-vectors given by
the Hodge star operator [19]. In this paper, we consider only the linear transformation given
by the Hodge star operator on the grounds that the difference between the space of forms and
vectors can be neglected in the linear theory of the deformed material-space.

The Hodge star operation is given by

∗ = (−1)z

p!
εi1...jp+1...jn

gip+1jp+1 . . . ginjn (21)

wherez is the number of negative signs of the metric,εi1...jp+1...jn
is the Levi-Civita tensor and

gip+1jp+1 . . . ginjn is the diagonal elements of the metric (e.g. [16] and the references therein). For
instance, let us calculate the dual of the velocity and distortion 1-form:Bi = vi dT +βiA dxA.
From (21) andx4 = cT , we have

∗Bi = 1

c
vi dV − cβiA dSA ∧ dT (22)

where the property of dual transformation should be noted: i.e., the time-like componentvi dT
is transformed into the space-like componentvi dV/c and, conversely,βiA dxA is transformed
into cβiA dSA∧dT . BecauseBi is a 1-form inF3+1, the associated field of∗Bi is a(4−1=)3-
form inG3+1: that is, the stress and momentum 3-form (see table 2):

6i = −σ iA dSA ∧ dT + pi dV. (23)

Then, we express this duality by the following linear relation:

6i =
√
Eρ ∗ Bi. (24)

From (22) andc = √E/ρ, this relation can be expressed explicitly as follows:

6i =
√
Eρ

(√
ρ

E
vi dV −

√
E

ρ
βiA dSA ∧ dT

)
= ρvi dV − EβiA dSA ∧ dT . (25)

Comparing with (23) and (25), we have the dual time-like and the dual space-like components
of (24), respectively:

pi = ρvi and σ iA = EβiA. (26)

The first equation is the definition of momentum. The second is the extended Hooke’s law in
the total strain theory of plasticity [20]. Thus, (24) can be recognized as one of the constitutive
equations in four-dimensional material space–time.

In the same way, we have another three dual relations, i.e. four-dimensional constitutive
equations (and their dual time-like and space-like components):

Mi = e
√
Eρ ∗Ki (aiA = −eρωiA andmiA = −eEκiA) (27)

Ci = f
√
Eρ ∗Di (ξ iA = fρI iA andciA = fEαiA) (28)

Xi = g
√
Eρ ∗�i (ζ iA = −gρJ iA andχi = −gE2i) (29)

wheree, f andg are constants. These results are summarized graphically in figure 1. The
solid lines represent the Hodge star operator.
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5. Discussions and conclusions

We reformulated the previous three-dimensional stress space [7–12] in a(3 + 1)-dimensional
stress space–time(G3+1) to derive the continuity and kinematic equations inG3+1: (13)–(16).
Components of the continuity equations (13) and (14) (i.e. (17) and (18)) are in agreement
with previous studies (e.g. [7]). Components of the kinematic equations (15) and (16) (i.e. (19)
and (20)) are also in agreement with Schaefer [18]. They are summarized by the schematic
diagram in figure 1, which shows that continuity and kinematic equations inG3+1 can be
derived geometrically by the transformation fromp-form to (p + 1)-form inG3+1.

Next, let us consider these equations ofG3+1 from the viewpoint of Cartan connections.
Edelen and Lagoudas [2] have shown that the kinematic equations of the strain space–time can
be mapped into the Cartan equations of structure (see also [7, 21]). By analogy, we express
quantities of stress space–time in terms of the geometric objects:

Xi = ϕi, Ci = 0ij ∧ ϕj , 6i = 4ij ∧ ϕj − 0ij ∧9j and Mi = 9i

(30)

whereϕi is a dual basis 1-form,0ij is a connection 1-form,4ij is a curvature 2-form and9i

is a torsion 2-form. In this case, the kinematic equations (15) and (16) can be rewritten as the
Cartan structure equations (e.g. [22,23]):

9i = dϕi + 0ij ∧ ϕj and 4ij = d0ij + 0ik ∧ 0kj (31)

and the continuity equations (13) and (14) can be rewritten as the Bianchi identities
(e.g. [22,23]):

d9i = 4ij ∧ ϕj − 0ij ∧9j and d4ij = 4ik ∧ 0kj − 0ik ∧4kj . (32)

This geometric structure of stress space–time is very similar to that of strain space–time.
This dual point of view was first pointed out by Schaefer [8] in the framework of the
Riemannian geometry and then extended to the non-Riemannian viewpoint by Stojanovitch [9]
and Minagawa [10].

To analyse the geometric meaning of the duality mentioned above, we used the linear
Hodge star operator. The result of this analysis is summarized in figure 1, which gives a
geometric interpretation of the generalized Tonti diagram [13] and shows that constitutive
equations can be derived by the transformation between thep-form of the strain space–time
and the(4 − p)-form of the stress space–time. Let us compare these derived constitutive
equations (24), (27)–(29) with the results of previous studies. Components of (24) (i.e. (26))
have already been derived independently, but it should be noted that these two well known
relations can be unified as (24) in four-dimensional space–time. Equation (27) is in agreement
with the equation in micropolar theory (e.g. [24] and the references therein). According to
micropolar theory, constante contains a physical property with the dimension of length. The
dual space-like components (the second equation) of (28) and (29) have been already pointed
out by Amari [7]. On the other hand, the dual time-like components (the first equation) of (28)
and (29) are often omitted in the previous paper [7,10,12], although Schaefer [18] pointed out
the existence of these constitutive equations. In summary, the Hodge duality transformation,
which links the strain and stress space, enables us to derive several constitutive equations of
previous papers in a systematic way.

In this paper, we suggested the dual material space–time in the language of differential
forms: one is the strain space–time, and the other is the stress space–time. By analogy with
Edelen and Lagoudas [2], we extended previous three-dimensional stress space to be four-
dimensional space–time, whose kinematic and continuity equations are direct consequences of
the continuity equation for couple stress and angular momentum 2-form. Moreover, we derived
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constitutive equations of defect field on the basis of Hodge duality transformation. These results
are summarized in figure 1, which shows that the continuity and kinematic equations in each
space can be derived by the derivative operator, and the constitutive equations by the Hodge
star operator. In this case, kinematic, continuity and constitutive equations can be interpreted
geometrically as Cartan structure equations, Bianchi identities and duality transformations,
respectively.

We would like to thank H Nakamura, K Nanjo and T Chiba for their valuable discussions.
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